Close today: \quad HW_3D, 4A,4B $(6.2 / 6.3,6.4)$
Close next Wed: HW_5A, 5B, 5C (6.5,7.1,7.2)

6.5 Average Value

The average y-value of $y=f(x)$ from
$x=a$ to $x=b$ is given by

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Entry Task: The formula for the temperature of a particular object is $T(t)=t^{2}$ degrees Fahrenheit where t is in hours. Find the average temperature from $t=1$ to $t=4$ hours.

The mean value theorem for integrals: If $f(x)$ is continuous on from $x=a$ to $x=b$, then there is at least one value $x=c$ at which

$$
f(c)=f_{\text {ave }}
$$

Example:
Using $T(t)=t^{2}$ from $t=1$ to $t=4$ again.
Find a time at which the temperature is exactly equal to the average value.

Average Value Derivation

The average value of the n numbers:

$$
y_{1}, y_{2}, y_{3}, \ldots, y_{n}
$$

is given by
$\frac{y_{1}+y_{2}+y_{3}+\cdots+y_{n}}{n}=y_{1} \frac{1}{n}+\cdots+y_{n} \frac{1}{n}$.
Goal: We want the average value of all the y-values of some function $y=f(x)$ over an interval $x=a$ to $x=b$.

Derivation:

1. Break into n equal subdivisions
$\Delta x=\frac{b-a}{n}$, which means $\frac{\Delta x}{b-a}=\frac{1}{n}$
2. Compute y-value at each tick mark
$y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right), \ldots, y_{n}=f\left(x_{n}\right)$
3. Ave $\approx f\left(x_{1}\right) \frac{\Delta x}{b-a}+\cdots+f\left(x_{n}\right) \frac{\Delta x}{b-a}$

$$
\text { Average } \approx \frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Thus,

$$
\begin{aligned}
\text { Average } & =\frac{1}{b-a} \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
f_{\text {ave }} & =\frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{aligned}
$$

7.1 Integration by Parts

Goal: We will reverse the product rule.

Before we start, add these to your basic list of integrals:

$$
\begin{aligned}
\int \sin (a x+b) d x & =-\frac{1}{a} \cos (a x+b)+C \\
\int \cos (a x+b) d x & =\frac{1}{a} \sin (a x+b)+C \\
\int e^{a x+b} d x & =\frac{1}{a} e^{a x+b}+C \\
\int \frac{1}{\mathrm{ax}+\mathrm{b}} d x & =\frac{1}{a} \ln |a x+b|+C
\end{aligned}
$$

Derivation of Integration By Parts

The product rule says:

$$
u(x) v^{\prime}(x)+v(x) u^{\prime}(x)=\frac{d}{d x}(u(x) v(x))
$$

which can be written as
$\int u(x) v^{\prime}(x) d x+\int v(x) u^{\prime}(x) d x=u(x) v(x)$
Writing this in terms of the differentials:

$$
d v=v^{\prime}(x) d x \text { and } d u=u^{\prime}(x) d x
$$

we have

$$
\int u d v+\int v d u=u v
$$

which we rearrange to get

Integration by Parts formula:

$$
\int u d v=u v-\int v d u
$$

> Example:
> $\int x \cos (8 x) d x$
> Step 1: Choose u and $d v$.
> Step 2: Compute du and v.
> Step 3: Use formula (and hope)

Example:
 $\int x^{2} \ln (x) d x$

Example:
 $\int_{1}^{e} x^{2} \ln (x) d x$

Notes:

1. The symbols u and v never appear in the integration. They are just locations in the formula (no variables are changing, this is not substitution).
$2 . u$ and $d v$ completely split up the integrand. Once you chose \boldsymbol{u}, then $d v$ is everything else.
2. The goal is to make
$\int v d u$ "nicer" than $\int u d v$
(a) Pick $u=$ "something that gives a derivative that is simpler than the original $u^{\prime \prime}$
(b) Pick $\mathrm{dv}=$ "something that you can integrate"
(c) And hope "vdu" is something in our table!

Example:
 $\int x^{2} e^{x / 2} d x$

Example:
 $\int e^{x} \cos (x) d x$

Example:
 $\int \sin ^{-1}(x) d x$

